- Masatsura IGAMI
- Japan
- A senior researcher of the National Institute of Science and Technology Policy (NISTEP)

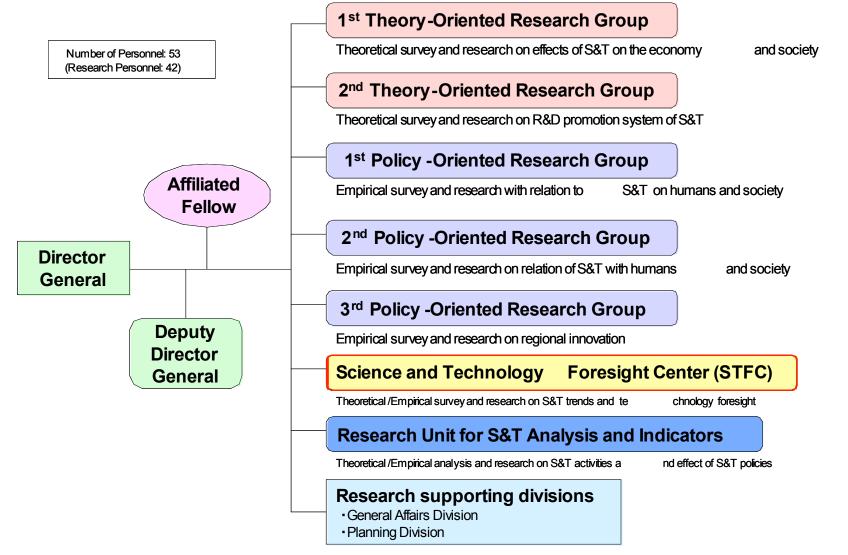
What is NISTEP?

 An institute affiliated with the Ministry of Culture, Sports, Education, Science, and Technology (MEXT)

Our mission

- To lead planning of government S&T policies by conducting S&T policy research with a comprehensive and long-term perspective
- To provide the result of the research to the society, and support the firms and the other related organizations for their setting up their strategies for R&D and innovation management
- To promote an international policy research by integrating worldwide the institutions with human resources, and educate R&D planners in private sector, the policy researchers in academia and the administrative officials

History


- 1985, the Ad hoc Council for Promotion of Administrative Reform noted the importance of S&T policy research as a process to strengthen the functions of S&T policy planning.
- July 1, 1988, NISTEP was founded as an affiliated research institute under the Science & Technology Agency (STA)
- January 2001, the central government system was drastically reformed.
- NISTEP became an institute affiliated with the Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- July 1, 2008, 20th anniversary of the foundation

Members of the NISTEP

Structure

Research Unit for S&T analysis and indicators

- Science and technology indicators
- Expert survey on Japanese S&T system
- Survey of scientific, technological and academic activities in the universities
- Bibliometrics analyses
 - Scientific literatures
 - Patents
 - Science Map 2002, 2004 and 2006

Science Map 2006

will be published in next April. But, in Japanese.

What's new

- New visualization tool
- New mapping technique enabling to track the evolution of science, co-mapping of science map 2004 and 2006
- Interview survey to scientists
 - Is our science map reliable? (Location of research areas..)
 - If we had a science map of 5-10 years ago, how would it differ from the science map 2006?
 - If we had a science map of 5-10 years later, how would it differ from the science map 2006? (Emergence of new research areas, Convergence of research areas..)

Density Plot of Science Map 2004

Share of China in citing papers

Science Map 2004

Purposes of our study

- Identify "hot" research areas in science
- Track the changing nature of research areas
- Assess interactions between disciplines

- Science Map 2004 -Study on Hot Research Areas (1999-2004) by Bibliometric Method- (NISTEP REPORT No.100 Jun. 2007)
- Capturing the Evolving Nature of Science, the Development of New Scientific Indicators and the Mapping of Science (STI Working Paper 2007/1) Masatsura Igami and Ayaka Saka

Our Method for Mapping of Science

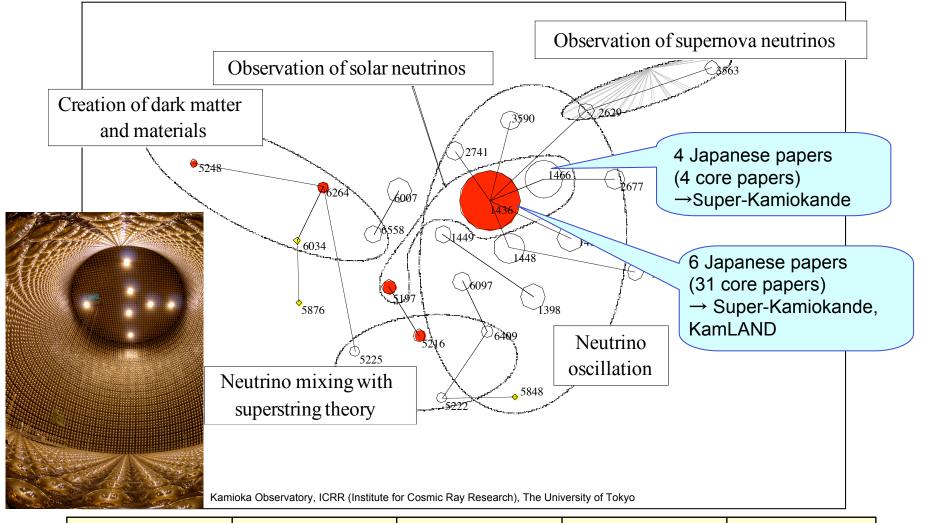
Constructing research areas from scientific literatures

- Clustering of papers by co-citation
- Top 1% highly cited papers in 22 fields (1999-2004)
- Highly cited papers → research fronts → research areas (133 areas)
- Research Front database in Essential Science Indicators (Thomson Scientific)
- Content analysis by experts

1 1

- Detailed analysis of RAs by staffs of STFC@NISTEP
- Comments from experts (STFC: Expert network, ...)

The following three maps were developed concerning 133 RAs:

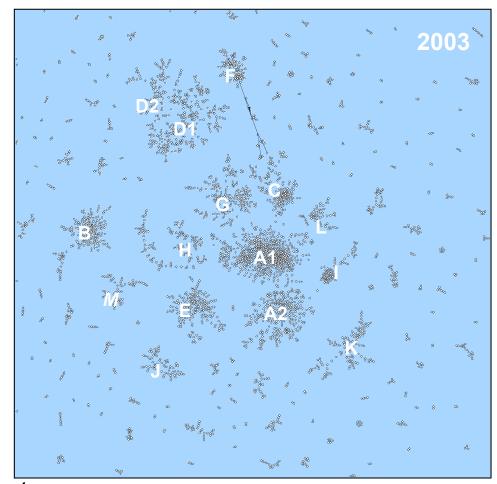

- Individual RA map, showing what research themes each of the 133 RAs consists of
- Relation map with traditional discipline, showing how 133 RAs are related to traditional disciplines
- Correlation map, depicting the strength of the relationship among 133 RAs

ID77_Neutrino oscillation and creation of universe

Research fronts (Hot RFs)	Core papers	Citing papers	Citations	Mean publication year	P
25 (5)	135	2712	11639	2001.6	

Mapping of patent applications based on citation

 Identification of large technological domains in nanotechnology based on citations among patent applications filed to the EPO.


Methodology

- A gravity model. Each patent application is treated like an atom in a molecule.
- A patent application feels attractive and repulsive forces that are caused by interactions with other patent applications.
- Attractive forces only act on a pair of patent applications which are directly linked by citations.
 - Citations among nanotechnology patent applications designated to the EPO are only considered.
- Repulsive forces act on all pairs of patent applications.

A map of nanotechnology patent applications

- Fifteen domains are found in 2003.
- Mutual interactions among technological domains are small.
- "Sensing and actuating technologies on the nanometre scale" play a vital role.

A1	Sensing and actuating technologies on the nanometre scale				
A2	Technologies related to carbon nanotubes				
В	Technologies related to cyclodextrin				
С	Manufacturing and application of thin films				
D1	Ontical devices				
D2	Optical devices				
Е	Spintronics				
F	Drug delivery				
G	Manufacturing and measurement for biotechnology				
Н	Semiconductor devices/Single electron devices				
I	Electron emission devices				
J	Lithography on the nanometre scale				
K	Photonic crystals				
L	Semiconductor nanoparticles and nanocrystals				
М	Application of nanoparticles as pigments				